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It is well known that 4,4-disubstituted cyclohex-2-enones will 
undergo photorearrangement to bicyclo[3.1.0]hexan-2-ones and 
C = C bond reduction via a triplet ir,7r* state,2-6 while reactions 
involving initial hydrogen abstraction by oxygen or aryl migrations 
have been ascribed to triplet states with n,7r* character.3'4,7,8 

We report a reinvestigation of the photochemistry of phenan-
throne I in isopropyl alcohol (IPA). Employing either naphthalene 

or phenanthrene as triplet quencher, we find that Stern-Volmer 
plots for formation of 2 and 3 have clearly distinct slopes (see 
Figure 1), in conflict with the conclusion of Zimmerman et al.9 

that the 3(n,ir*) state was responsible for the formation of both 
products. 

Using a laser flash technique, Bonneau et al.10 have directly 
measured the lifetime, T0, of a transient triplet excited state of 
1 in IPA to be 145 ns and the rate constant, kq, of quenching of 
this triplet by naphthalene to be 4 X 108 M"1 s"1. Taking this 
value and the upper slope in Figure 1 (60 M"1),11 we find T0 equals 
150 ns. The gratifying agreement of these T0 values supports the 
conclusion that the twisted ir,7r* triplet state observed in the flash 
study10'12 is indeed the precursor to the lumiketone.13 The 
quenching data further indicate that the pinacol is coming from 
a different triplet state, presumably the n,ir* triplet,2,7,9 and the 
two triplet states are not in thermal equilibrium. If quenching 
of this triplet by naphthalene occurs at close to the diffusion-
controlled rate (~5 X 109 M"' s"1),7 its lifetime would be too short 
(~4 ns) to be detected in this flash experiment.10 

The previously undetected products 4,14 5,14,15 and 616,17 were 
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Figure 1. Stern-Volmer plots for quenching by naphthalene of formation 
of products 2-6 on irradiation of 1 in IPA. 
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isolated and identified by both GC/MS data and coinjection with 
authentic samples synthesized independently. Compounds 2-6 
were formed in approximately the same ratio on direct irradiation 
and triplet sensitization using acetophenone and p-methoxy-
acetophenone. Stern-Volmer quenching plots for all these products 
on direct excitation are linear (see Figure 1), indicating that all 
are derived exclusively from triplet excited states. 

The quenching data indicate that the stereoisomeric saturated 
ketones 4 and 5 arise from two different triplet excited states. The 
m-hexahydrophenanthrone 4, which originates from the 3(ir,ir*) 
state, presumably arises by a mechanism involving initial H ab­
straction at C^ (see Scheme I).3,5 The :ran^-hexahydro-
phenanthrone 5 originates from the 3(n,7r*) state,7 presumably 
via the hydroxyallyl radical, which is also the likely precursor to 
compounds 3 and 6 (see Scheme II). 

This is the first reported observation that reduction of the C = C 
bond of an a,/3-enone can originate from both 3(ir,ir*) and 3(n,7r*) 
states and that each pathway is stereospecific. It is well estab­
lished13,18"20 that a,/3-enone 3(7r,7r*) states are stabilized by twisting 
around the C = C bond, and their lifetimes correlate with the 
expected ease of such twisting.10,12,21 When 1 achieves such a 
twisted conformation (depicted in Figure 2), which is ideal for 
stereospecific rearrangement,22 the approach of any H donor at 
C5 will be seriously hindered from the side opposite to the angular 
methyl substituent but relatively open on the top face, leading 
to cw-phenanthrone 4. On the other hand, the allylic radical 
formed from the 3(n,ir*) state by H abstraction on oxygen will 
be basically planar in ring A.12 The angular methyl group will 
hinder attack at C5 by a H-donating species on the top face of 
this radical, affording ketone 5 after tautomerization of the 
first-formed trans-fused enol (see Scheme II). 

We therefore conclude that phenanthrone 1 indeed displays 
characteristic photoreactivity of cyclic enones.2 The observation 
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Figure 2. Phenanthrone 1 in its relaxed 3Tr1T* state. 
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that reduction of the C = C bond of 1 occurs by different mech­
anisms with opposite stereochemistry from two distinct triplet 
excited states is unprecedented. The possible generality of this 
phenomenon will be examined in other enones where the sub­
stitution pattern permits elucidation of the stereochemical course 
of this transformation. 
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The simplest alcohol, methanol (CH3OH), is the only low-
energy isomer in the CH4O potential-energy surface.1 This has 
also generally been assumed to be the case for the radical cation, 
most experimental studies of the CH4O+- system to date having 
been discussed in terms of the CH3OH+- structure (I).2 We 
report in this communication a second CH4O+- structure, the 
methylenoxonium radical cation CH2OH2

+- (2), that not only 
represents an additional stable isomer in the CH4O+- potential-
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Figure 1. Optimized geometries (HF/6-31G**) of CH4O
+- isomers (1 

and 2) and transition structures (3-5). 
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Figure 2. Schematic potential-energy profile for intramolecular and 
dissociative rearrangements in the CH4O

+- system. 

energy surface but lies lower in energy than CH3OH+- itself. 
Ab initio molecular orbital calculations with a large basis set 

and incorporating electron correlation were carried out3 for 1, 2, 
the transition structure 3 separating these isomers, the transition 
structures 4 and 5 for loss of H- from 1 and 2, respectively, and 
for the dissociation products CH2OH+ + H-, CH3

+ + OH-, and 
CH2

+- + H2O. Geometry optimizations utilized analytical gra-
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